Maximizing the Chaotic Behavior of Fractional Order Chen System by Evolutionary Algorithms

نویسندگان

چکیده

This paper presents the application of three optimization algorithms to increase chaotic behavior fractional order Chen system. is achieved by optimizing maximum Lyapunov exponent (MLE). The applied techniques are evolutionary (EAs), namely: differential evolution (DE), particle swarm (PSO), and invasive weed (IWO). In each algorithm, process performed using 100 individuals generations from 50 500, with a step 50, which makes total ten independent runs. results show that optimized systems have higher exponents than non-optimized system, DE giving highest MLE. Additionally, indicate system multifaceted respect parameter values. dynamical complexity verified properties, such as bifurcation, LE spectrum, equilibrium point, eigenvalue, sample entropy. Moreover, compared hyper-chaotic on basis their prediction times. shorter time suitable for developing secure communication random number generator. Finally, Halstead parameters measure were implemented in MATLAB. reveal has simplest implementation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Analysis of the Fractional-order Chen Chaotic System

In this paper, the existence and uniqueness of solution for fractional order Chen chaotic system is investigated theoretically based on the qualitative theory. The stability of the corresponding equilibria is also investigated similar to the integer order counterpart. According to the obtained results, the bifurcation conditions of these two systems are significantly different. Numerical simula...

متن کامل

Chaotic dynamics and synchronization of fractional order PMSM ‎system

‎In this paper, we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor (PMSM) system. The necessary condition for the existence of chaos in the fractional-order PMSM system is deduced and an active controller is developed based on the stability theory for fractional systems. The presented control scheme  is simple and flexible, and it is suitable both fo...

متن کامل

A novel solution for fractional chaotic Chen system

A novel solution to the fraction chaotic Chen system is presented in this paper by using the step homotopy analysis method. This method yields a continuous solution in terms of a rapidly convergent infinite power series with easily computable terms. Moreover, the residual error of the SHAM solution is defined and computed for each time interval. Via the computing of the residual error we observ...

متن کامل

Analysis and Circuit Implementation for the Fractional-order Chen System

Abstract. The paper firstly analyzes the fractional-order Chen system by using function approximation in frequency domain and time domain respectively, gives its Lyapunov exponents and bifurcation diagrams, and shows its chaotic characteristics from numerical analysis point of view. Then, based on fractional-order frequency domain approximation, two different analog circuits are designed to imp...

متن کامل

chaotic dynamics and synchronization of fractional order pmsm ‎system

‎in this paper, we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor (pmsm) system. the necessary condition for the existence of chaos in the fractional-order pmsm system is deduced and an active controller is developed based on the stability theory for fractional systems. the presented control scheme  is simple and flexible, and it is suitable both fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9111194